本文分析电子镇流器的功率因数校正问题,着重讨论了有源功率因数校正的三种模式(峰值电流控制、固定开通时间、固定频率平均电流连续导通模式)的工作原理,它们的优缺点及适用场合等。
关键词:无源功率因数校正 有源功率因数校正 峰值电流控制 固定开通时间 频率钳定 前(后)沿调制 断续导通、 临界导通、连续导通模式 过渡模式
在电子镇流器中通常采用图1a所示的输入电路,由于电解电容器CO的容量很大,工作时储存电荷很多,只有输入电压超过电容上的电压时,才有输入电流,所以电流波形严重失真,仅在电压峰值附近才会出现一个电流尖脉冲(如图1b)。这样一来,电路的功率因数变得很低,约为0.5左右,输入电流谐波含量十分丰富。而根据国标GB/T17263-2002以及欧洲法规EN63000-3-2,对25W以上的节能灯和电子镇流器的各次谐波的含量提出了严格要求,现有的许多电路根本无法满足这个要求。

为了减少镇流器输入电流的谐波失真,必须采取一些特殊措施,通常称之为功率因数校正(PFC Power factor correction)技术来提高它的功率因数。大致说来,功率因数校正有两种方案:无源功率因数校正(Passive PFC)和有源功率因数校正(Active PFC) ,前者已有很多资料介绍,不是本文讨论的重点,我们主要分析有源功率因数校正的三种模式,它们的工作原理、优缺点及适用场合等。
无源功率因数校正的原理及常用电
无源功率因数校正的原理主要是增加输入电流的导通时间,使电源电流的波形接近电压的正弦波形,减少它的失真。最初采用的方案是逐流电路。

它用图2(a)的电路代替图1的电容CO,电源通过VD3对电容C1、C2充电到输入电压峰值,每个电容电压最多为输入电压峰值之半。这样,电容可在120˚范围内充电,输入电流的时间被拉长,电流为零(死区)的时间只占33.3%。功率因数可提高到0.9左右,但电容上的电压起伏很大,谐波含量很高,仍然无法满足国标GB/T17263-2002及欧洲EN61000-3-2标准对各次谐波含量(2次到39次谐波)限值的要求,且灯管电流波峰系数很大,灯功率起伏很大,对人的视力及灯管寿命都不利。